On using an adaptive neural network to predict lung tumor motion during respiration for radiotherapy applications.
نویسندگان
چکیده
In this study we address the problem of predicting the position of a moving lung tumor during respiration on the basis of external breathing signals--a technique used for beam gating, tracking, and other dynamic motion management techniques in radiation therapy. We demonstrate the use of neural network filters to correlate tumor position with external surrogate markers while simultaneously predicting the motion ahead in time, for situations in which neither the breathing pattern nor the correlation between moving anatomical elements is constant in time. One pancreatic cancer patient and two lung cancer patients with mid/upper lobe tumors were fluoroscopically imaged to observe tumor motion synchronously with the movement of external chest markers during free breathing. The external marker position was provided as input to a feed-forward neural network that correlated the marker and tumor movement to predict the tumor position up to 800 ms in advance. The predicted tumor position was compared to its observed position to establish the accuracy with which the filter could dynamically track tumor motion under nonstationary conditions. These results were compared to simplified linear versions of the filter. The two lung cancer patients exhibited complex respiratory behavior in which the correlation between surrogate marker and tumor position changed with each cycle of breathing. By automatically and continuously adjusting its parameters to the observations, the neural network achieved better tracking accuracy than the fixed and adaptive linear filters. Variability and instability in human respiration complicate the task of predicting tumor position from surrogate breathing signals. Our results show that adaptive signal-processing filters can provide more accurate tumor position estimates than simpler stationary filters when presented with nonstationary breathing motion.
منابع مشابه
A quantitative investigation on lung tumor site on its motion tracking in radiotherapy with external surrogates
Introduction: In external beam radiotherapy each effort is done to deliver 3D dose distribution onto the tumor volume uniformly, while minimizing the dose to healthy organs at the same time. Radiation treatment of tumors located at thorax region such as lung and liver has a challenging issue during target localization since these tumors move mainly due to respiration. There are...
متن کاملComparative Analysis of Neural Network Training Methods in Real-time Radiotherapy
Background: The motions of body and tumor in some regions such as chest during radiotherapy treatments are one of the major concerns protecting normal tissues against high doses. By using real-time radiotherapy technique, it is possible to increase the accuracy of delivered dose to the tumor region by means of tracing markers on the body of patients.Objective: This study evaluates the accuracy ...
متن کاملA study on the accuracy of motion tracking of thoracic tumors at radiotherapy with external surrogates
Introduction: In radiotherapy with external surrogates, exact information of tumor position is one of the key factors that improves treatment delivery. Many dynamic tumors in thorax region of patient move mainly due to respiration and are known as intra-fractional motion error that must be compensated, as well. One of clinical strategy is using Stereotactic Body Radiation Thera...
متن کاملA Fast Neural Network Approach to Predict Lung Tumor Motion during Respiration for Radiation Therapy Applications
During radiotherapy treatment for thoracic and abdomen cancers, for example, lung cancers, respiratory motion moves the target tumor and thus badly affects the accuracy of radiation dose delivery into the target. A real-time image-guided technique can be used to monitor such lung tumor motion for accurate dose delivery, but the system latency up to several hundred milliseconds for repositioning...
متن کاملDynamic MLC Tracking Using 4D Lung Tumor Motion Modelling and EPID Feedback
Background: Respiratory motion causes thoracic movement and reduces targeting accuracy in radiotherapy. Objective: This study proposes an approach to generate a model to track lung tumor motion by controlling dynamic multi-leaf collimators. Material and Methods: All slices which contained tumor were contoured in the 4D-CT images for...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Medical physics
دوره 32 12 شماره
صفحات -
تاریخ انتشار 2005